A Cryptosystem Using the Concepts of Algebraic Geometric Code
نویسندگان
چکیده
Problem statement: Cryptosystem using linear codes was developed in 1978 by Mc-Eliece. Later in 1985 Niederreiter and others developed a modified version of cryptosystem using concepts of linear codes. But these systems were not used frequently because of its larger key size. In this study we were designing a cryptosystem using the concepts of algebraic geometric codes with smaller key size. Error detection and correction can be done efficiently by simple decoding methods using the cryptosystem developed. Approach: Algebraic geometric codes are codes, generated using curves. The cryptosystem use basic concepts of elliptic curves cryptography and generator matrix. Decrypted information takes the form of a repetition code. Due to this complexity of decoding procedure is reduced. Error detection and correction can be carried out efficiently by solving a simple system of linear equations, there by imposing the concepts of security along with error detection and correction. Results: Implementation of the algorithm is done on MATLAB and comparative analysis is also done on various parameters of the system. Attacks are common to all cryptosystems. But by securely choosing curve, field and representation of elements in field, we can overcome the attacks and a stable system can be generated. Conclusion: The algorithm defined here protects the information from an intruder and also from the error in communication channel by efficient error correction methods.
منابع مشابه
Improving the Rao-Nam secret key cryptosystem using regular EDF-QC-LDPC codes
This paper proposes an efficient joint secret key encryption-channel coding cryptosystem, based on regular Extended Difference Family Quasi-Cyclic Low-Density Parity-Check codes. The key length of the proposed cryptosystem decreases up to 85 percent using a new efficient compression algorithm. Cryptanalytic methods show that the improved cryptosystem has a significant security advantage over Ra...
متن کاملQTRU: quaternionic version of the NTRU public-key cryptosystems
In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...
متن کاملBirkhoff's Theorem from a geometric perspective: A simple example
From Hilbert's theorem of zeroes, and from Noether's ideal theory, Birkhoff derived certain algebraic concepts (as explained by Tholen) that have a dual significance in general toposes, similar to their role in the original examples of algebraic geometry. I will describe a simple example that illustrates some of the aspects of this relationship. The dualization from algebra to geometr...
متن کاملCryptanalysis of the McEliece cryptosystem over hyperelliptic codes
We present a practical expected usually quartic time algorithm to recover the structure of an algebraic geometry code defined over a hyperelliptic code of genus g ≤ 2. Its main application is an attack of the McEliece cryptosystem based on algebraic geometry codes defined over curves of small genus. Our algorithm is a adaptation of the well-known Sidelnikov-Shestakov algorithm [6].
متن کاملA Distinguisher for High Rate McEliece Cryptosystem
The purpose of this talk is to study the difficulty of the Goppa Code Distinguishing (GD) problem, which is the problem of distinguishing the public matrix in the McEliece cryptosystem from a random matrix. It is widely believed that this problem is computationally hard as proved by the increasing number of papers using this hardness assumption. One can consider that disproving/mitigating this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010